
Appendix E. Remote Temperature Sensor Case Study

This appendix describes an application of the proof-of-concept prototype, CODA,

described in Chapter 10, to a remote temperature sensor problem. The specification for

this system consists of a single, data flow diagram and a textual description. The

specification comes from Nielsen and Shumate.1 [Nielsen88, Appendix A] This specification

makes an interesting case study because Nielsen and Shumate use Structured Analysis,

augmented with event flows, in lieu of RTSA, to model the problem. This choice limits

the semantic model of the remote temperature sensor in two ways. First, the data flow

diagram, consistent with Structured Analysis, does not include control transformations

and state-transition diagrams. Consequently, the specification also does not include

triggers, enables, and disables. Second, the data flow diagram does not take advantage of

many of the modeling capabilities inherent in COBRA. Instead, Nielsen and Shumate

perform a functional decomposition that leads to several chains of transformations, where

each transformation represents an aperiodic function. These facts mean that: 1) CODA

must generate a design from a data flow diagram that uses only a subset of the semantic

concepts included within the specification meta-model and 2) CODA must reason about

chains of aperiodic functions to a degree not seen in the previous case studies. The

1 The literature contains other treatments of this same problem. [Carter88, Cherry86,
Howes90, Nielsen87, Sanden89a, Sanden94, Shumate92, Smith93, Young82]

remote temperature sensor application, then, provides an example where CODA’s

reasoning abilities provide the designer with only a limited degree of assistance.

E.1 Analyzing the Specification

Nielsen and Shumate provide a data flow diagram for a remote temperature

sensor. [Nielsen88, page 278] A designer loads this diagram, exactly as drawn by Nielsen and

Shumate, into CODA and then CODA analyzes the diagram. Figure 71 depicts the

diagram, annotated, as in previous case studies, with the information inferred and elicited

by CODA.

E.1.1 Evaluating the Original Data Flow Diagram

After loading the remote temperature sensor (RTS) specification, the designer

examines the state and finds the condition of the specification to be unknown. Finding

the classification of concepts to be incomplete, the designer asks CODA to classify

concepts in the specification. After querying the designer about the nature of the

terminators on the diagram, CODA proceeds through the first three stages of

classification without consulting the designer. In the fourth stage of classification,

CODA asks the designer for assistance to classify a number of transformations.

First, CODA identifies three transformations, Prepare CP ACK, Get Temperature

Reading, and Maintain Temperature Table, likely to represent synchronous functions.

CODA asks the designer to confirm or override these decisions. In all three cases, the

designer confirms the classifications. Next, CODA encounters eight transformations,

Determine Msg Type, Create ICP, Validate ICP, Monitor Periodic Query, Wait for DP

560

561

O
ut

pu
t C

ha
nn

el
[D

ev
ic

e
@

]

In
pu

t C
ha

nn
el

[D
ev

ic
e

@
]

R
ec

ei
ve

 H
os

t
In

pu
t

[P
as

si
ve

 D
ev

ic
e

In
pu

t O
bj

ec
t =

]

D
et

er
m

in
e

M
sg

 T
yp

e
[S

yn
ch

ro
no

us
F

un
ct

io
n

+
]

C
re

at
e

IC
P

[S
yn

ch
ro

no
us

F
un

ct
io

n
+

]

V
al

id
at

e
IC

P
[A

sy
nc

hr
on

ou
s

F
un

ct
io

n
+

]

M
on

ito
r

P
er

io
di

c
Q

ue
ry

[S
yn

ch
ro

no
us

F
un

ct
io

n
+

]

M
ai

nt
ai

n
T

em
pe

ra
tu

re
 T

ab
le

[S
yn

ch
ro

no
us

F
un

ct
io

n
?]

T
em

pe
ra

tu
re

 T
ab

le
[D

at
a

S
to

re
 #

]

P
re

pa
re

 C
P

_A
C

K
[S

yn
ch

ro
no

us
F

un
ct

io
n

?]

W
ai

t f
or

Q
ue

ry
 T

im
eo

ut
[A

sy
nc

hr
on

ou
s

F
un

ct
io

n
+

]

G
et

 T
em

pe
ra

tu
re

R
ea

di
ng

[S
yn

ch
ro

no
us

F
un

ct
io

n
?]

Q
ue

ry
 D

ig
ita

l
T

he
rm

om
et

er
[P

as
si

ve
 D

ev
ic

e
IO

 O
bj

ec
t =

]

D
ig

ita
l

T
he

rm
om

et
er

[D
ev

ic
e

@
]

P
re

pa
re

 ID
P

[S
yn

ch
ro

no
us

F
un

ct
io

n
+

]

C
re

at
e

N
ew

 D
P

[A
sy

nc
hr

on
ou

s
F

un
ct

io
n

+
]

S
en

d
O

ld
 D

P
[A

sy
nc

hr
on

ou
s

F
un

ct
io

n
=

]

W
ai

t f
or

 D
P

_A
C

K
T

im
eo

ut
[A

sy
nc

hr
on

ou
s

F
un

ct
io

n
+]

G
et

 N
ew

 D
P

[A
sy

nc
hr

on
ou

s
F

un
ct

io
n

=
]

T
ra

ns
m

it
H

os
t

O
ut

pu
t

[P
as

si
ve

 D
ev

ic
e

O
ut

pu
t O

bj
ec

t =
]

D
P

,
C

P
_A

C
K

[O
ut

pu
t =

]

C
P

,
D

P
_A

C
K

[In
pu

t =
]

C
P

,
D

P
_A

C
K

[S
tim

ul
us

 =
]

C
P

[S
tim

ul
us

 =
]

In
pu

t
M

sg
[S

tim
ul

us
 =

]

IC
P

[S
tim

ul
us

 =
]

[S
to

re
 =

]

[R
et

rie
ve

 =
]

S
eq

ue
nc

e
N

o.
[S

tim
ul

us
 =

]

C
P

_A
C

K
[S

tim
ul

us
 =

]

T
im

e,
F

ur
na

ce
#

[S
tim

ul
us

 =
]

F
ur

na
ce

#
[S

tim
ul

us
 =

]

F
ur

na
ce

#
[S

tim
ul

us
 =

]

T
em

pe
ra

tu
re

[R
es

po
ns

e
=

]

F
ur

na
ce

#
[O

ut
pu

t =
]

T
em

pe
ra

tu
re

[In
pu

t =
]

F
ur

na
ce

#,
T

em
pe

ra
tu

re
[S

tim
ul

us
 =

]

ID
P

[S
tim

ul
us

 =
]

N
ew

 D
P

[S
tim

ul
us

 =
]

O
ld

 D
P

[S
tim

ul
us

 =
]

O
ld

 D
P

[S
tim

ul
us

 =
]

R
es

en
d

T
im

eo
ut

[S
ig

na
l =

]

N
ew

 D
P

[S
tim

ul
us

 =
]

D
P

_N
A

K
R

ec
ei

ve
d

[S
ig

na
l =

]

D
P

_A
C

K
R

ec
ei

ve
d

[S
ig

na
l =

]

Figure 71. Original RTS Data Flow Diagram as Analyzed by CODA

ACK Timeout, Wait for Query Timeout, Create New DP, and Prepare IDP, that can be

more accurately classified based on application-specific knowledge that might be

available to the designer. In each of these eight cases, CODA consults the designer, who

provides the requested information. Based on this information CODA classifies the

transformations. After classifying all elements on the data flow diagram, CODA elicits

any additional information that might help with design generation. In this example, the

designer provides no additional information. Next, the designer attempts to verify the

specification’s utility. Unfortunately, though all specification elements are classified

fully, some axioms remain unsatisfied.

E.1.2 Correcting and Reevaluating the Data Flow Diagram

By examining the notices logged by CODA, the designer finds that three

transformations, shaded in Figure 71, violate axioms for concepts of their type. One

transformation, Receive Host Input, classified as a Passive Input Device Object, violates

two axioms. First, any Passive Input Device Object must receive a Stimulus or a Signal.

Second, any Passive Input Device Object must emit a Response. Examination of Figure

71 reveals that the transformation, Receive Host Input, does indeed violate these axioms.

Further, after reviewing the textual specification concerning this transformation, the

designer realizes that the devices in the problem are all asynchronous devices, not passive

devices, as classified by CODA. These problems arise because Nielsen and Shumate do

not depict the event flows from the external devices to the appropriate transformations.

562

The designer corrects these deficiencies simply by adding three event flows, one from

each Terminator to its corresponding Interface Object, to the data flow diagram.

Another transformation, Wait for DP ACK Timeout, classified as an

Asynchronous Function, violates two axioms. First, any transformation requires at least

one incoming arc. Second, any function requires an incoming activator, that is, a Signal,

a Stimulus, a Timer, or a Control Event Flow. A review of Figure 71 verifies that the

transformation in question, Wait for DP ACK Timeout, violates these two axioms. Upon

reading the textual specification for the remote temperature sensor, the designer discovers

that the transformation, Wait for DP ACK Timeout, serves only to generate a periodic

event flow to another transformation, Send Old DP. The specification meta-model,

allows this requirement to be modeled easily with a Timer event flow directly into the

periodic transformation, Send Old DP, from the system. Here, then, the designer

eliminates one transformation, Wait for DP ACK Timeout, from the data flow diagram,

and changes the source for one event flow, Resend Timeout, to be "System".

Turning to the third, ill-defined transformation, Monitor Periodic Query,

classified as a Synchronous Function, the designer finds that one axiom is violated: Each

function requires an incoming activator. The transformation, Monitor Periodic Query,

has no means of activation. Upon reviewing the textual specification, the designer

discovers that the transformation is intended to operate periodically. The specification

meta-model allows this requirement to be specified directly by adding a Timer event

flow, Check Furnaces, from the "System" to the transformation, Monitor Periodic Query.

563

In addition to correcting these specification errors, the designer also labels each

transformation in the data flow diagram with a unique number. These numbers, while

optional, provide a means of tracking the decomposition hierarchy, should some future

version of the specification be further decomposed.

Figure 72 gives the amended data flow diagram, annotated with information

inferred and elicited by CODA. The designer loads the amended specification and then,

finding the classification of specification elements to be incomplete, asks CODA to

classify the specification. After inquiring about the nature of terminators in the

specification, CODA proceeds straight through the initial stages of classification. Upon

reaching the final stage of classification, CODA makes a tentative classification of one

transformation, Maintain Temperature Table, as a Synchronous Function. CODA asks

the designer to confirm or override this decision. After reading the textual specification

accompanying the data flow diagram, the designer decides that the transformation

requires substantial execution time and should be an Asynchronous Function; thus, the

designer overrides CODA’s tentative classification. Also during the final classification

stage, CODA finds that some application-specific knowledge can help to classify more

accurately eight transformations, Determine Msg Type, Create ICP, Validate ICP,

Prepare CP ACK, Wait for Query Timeout, Create New DP, Prepare IDP, and Get

Temperature Reading. CODA asks the designer to supply, where known, the helpful

information. In this example, the designer supplies the requested information and CODA

decides how to classify each transformation in question.

564

565

O
ut

pu
t C

ha
nn

el
[D

ev
ic

e
@

]

In
pu

t C
ha

nn
el

[D
ev

ic
e

@
]

R
ec

ei
ve

H
os

t I
np

ut
2

[A
sy

nc
hr

on
ou

s
D

ev
ic

e
In

pu
t

O
bj

ec
t =

]

D
et

er
m

in
e

M
sg

 T
yp

e
3

[S
yn

ch
ro

no
us

F
un

ct
io

n
+

]

C
re

at
e

IC
P

4
[S

yn
ch

ro
no

us
F

un
ct

io
n

+
]

V
al

id
at

e
IC

P
5

[A
sy

nc
hr

on
ou

s
F

un
ct

io
n

+
]

M
on

ito
r

P
er

io
di

c
Q

ue
ry

8
[P

er
io

di
c

F
un

ct
io

n
=

]

M
ai

nt
ai

n
T

em
pe

ra
tu

re
T

ab
le

7
[A

sy
nc

hr
on

ou
s

F
un

ct
io

n
?]

T
em

pe
ra

tu
re

 T
ab

le
[D

at
a

S
to

re
 #

]

P
re

pa
re

C
P

_A
C

K
6

[S
yn

ch
ro

no
us

F
un

ct
io

n
+

]

W
ai

t f
or

Q
ue

ry
 T

im
eo

ut
9

[A
sy

nc
hr

on
ou

s
F

un
ct

io
n

+
]

G
et

T
em

pe
ra

tu
re

R
ea

di
ng

10
[S

yn
ch

ro
no

us
F

un
ct

io
n

+
]

Q
ue

ry
D

ig
ita

l
T

he
rm

om
et

er
11

[A
sy

nc
hr

on
ou

s
D

ev
ic

e
IO

O
bj

ec
t =

]

D
ig

ita
l

T
he

rm
om

et
er

[D
ev

ic
e

@
]

P
re

pa
re

 ID
P

12
[S

yn
ch

ro
no

us
F

un
ct

io
n

+
]

C
re

at
e

N
ew

 D
P

13
[A

sy
nc

hr
on

ou
s

F
un

ct
io

n
+

]

S
en

d
O

ld
 D

P
15

[P
er

io
di

c
F

un
ct

io
n

=
]

G
et

 N
ew

 D
P

14
[A

sy
nc

hr
on

ou
s

F
un

ct
io

n
=

]

T
ra

ns
m

it
H

os
t O

ut
pu

t
1

[A
sy

nc
hr

on
us

D
ev

ic
e

O
ut

pu
t

O
bj

ec
t =

]

D
P

,
C

P
_A

C
K

[O
ut

pu
t =

]

C
P

,
D

P
_A

C
K

[In
pu

t =
]

[M
ax

. R
at

e
10

 p
er

 s
ec

. *
]

C
P

,
D

P
_A

C
K

[S
tim

ul
us

 =
]

C
P

[S
tim

ul
us

 =
]

In
pu

t
M

sg
[S

tim
ul

us
 =

]

IC
P

[S
tim

ul
us

 =
]

[S
to

re
 =

]

[R
et

rie
ve

 =
]

S
eq

ue
nc

e
N

o.
[S

tim
ul

us
 =

]

C
P

_A
C

K
[S

tim
ul

us
 =

]

T
im

e,
F

ur
na

ce
#

[S
tim

ul
us

 =
]

F
ur

na
ce

#
[S

tim
ul

us
 =

]

F
ur

na
ce

#
[S

tim
ul

us
 =

]

T
em

pe
ra

tu
re

[R
es

po
ns

e
=

]

F
ur

na
ce

#
[O

ut
pu

t =
]

T
em

pe
ra

tu
re

[In
pu

t =
]

[M
ax

. R
at

e
10

 p
er

 s
ec

s.
 *

]

F
ur

na
ce

#,
T

em
pe

ra
tu

re
[S

tim
ul

us
 =

]

ID
P

[S
tim

ul
us

 =
]

N
ew

 D
P

[S
tim

ul
us

 =
]

O
ld

 D
P

[S
tim

ul
us

 =
]

O
ld

 D
P

[S
tim

ul
us

 =
]

R
es

en
d

T
im

eo
ut

[T
im

er
 =

]
[P

er
io

d
2

se
cs

. *
]

N
ew

 D
P

[S
tim

ul
us

 =
]

D
P

_N
A

K
R

ec
ei

ve
d

[S
ig

na
l =

]

D
P

_A
C

K
R

ec
ei

ve
d

[S
ig

na
l =

]

T
x

In
te

rr
up

t
[In

te
rr

up
t =

]
[M

ax
. R

at
e

10
 p

er
 s

ec
. *

]

R
x

In
te

rr
up

t
[In

te
rr

up
t =

]

C
he

ck
 F

ur
na

ce
s

[T
im

er
 =

]
[P

er
io

d
5

se
cs

. *
]S

en
so

r
In

te
rr

up
t

[In
te

rr
up

t =
]

Figure 72. Amended RTS Data Flow Diagram as Analyzed by CODA

E.1.3 Eliciting Additional Information

After completing concept classification, CODA elicits additional information

from the designer as required to help generate a concurrent design. Each of two timers,

one for Send Old DP and one for Monitor Periodic Query, requires a period. Perusal of

the textual specification indicates that the appropriate values are two and five seconds,

respectively. CODA also asks the designer to supply maximum event rates for the three

device-interface objects, Receive Host Input, Query Digital Thermometer, and Transmit

Host Output, shown in the data flow diagram. The values supplied derive from the

estimated channel rates and message sizes for each device.

Next, CODA asks the designer to supply any specification addenda that can help

generate an appropriate, concurrent design. First, CODA displays a list of the

asynchronous and periodic functions in the specification and asks the designer to identify

any subsets of those functions that cannot execute at the same time. After examining the

diagram, the designer decides that operations that update and read from the temperature

table must be conducted with mutual exclusion in order to avoid reading incorrect

information from the data store. For this reason, the designer indicates that two

functions, Maintain Temperature Table and Monitor Periodic Query, should be placed

together in an exclusion group. Second, after reading the textual specification, the

designer finds that the host and remote computers use a stop-and-wait protocol to

exchange data packets. This means that the remote temperature sensor either sends a new

data packet, or resends an old data packet, but never performs both functions

566

simultaneously. For this reason, the designer indicates that the two related

transformations, Get New DP and Send Old DP, should be included in an exclusion

group.

To finish analyzing the specification, CODA elicits, and the designer declines to

provide, any additional specification addenda. The designer verifies the specification’s

state as classified completely, with all axioms satisfied. From this point, a design can be

generated.

E.2 Generating the Design

The designer decides to begin the design-generation process by structuring tasks

from the data flow diagram. First, the designer loads a target environment description

that simulates the facilities available in Ada, that is, an environment without message

queuing services. The designer selects this environment because Nielsen and Shumate

target their design for an Ada run-time system.

E.2.1 Structuring Tasks

Next, the designer initiates task structuring. After identifying candidate tasks,

CODA attempts to allocate the remaining transformations to tasks. For a number of

synchronous functions, CODA recognizes that application-specific knowledge might lead

to better decisions. In these instances, CODA attempts to elicit any available insights

from the designer. For example, CODA explains that a transformation, Get Temperature

Reading, might be allocated to the same task as one of two, connected transformations,

Wait for Query Timeout and Query Digital Thermometer. CODA then asks the designer

567

if the transformation in question, Get Temperature Reading, should be allocated to the

same task as one or the other of the connected transformations. If the designer can

provide this information, then CODA can make a better decision about allocating the

transformation, Get Temperature Reading. Two other transformations, Prepare CP ACK

and Determine Msg Type, each classified as a Synchronous Function, might also be

allocated to one of several tasks. For each of these transformations, CODA asks the

designer for, and receives, guidance.

After completing the allocation of transformations to tasks, CODA considers

combining tasks and creating resource monitor tasks. Next, CODA invites the designer

to review and rename tasks in the design. The designer accepts the invitation. Upon

completion of task structuring, the designer saves the design and checks the state of the

design process. Table 49 gives the results of CODA’s task structuring, including: the

tasks created, the transformations allocated to each task, and the criterion used in

determining each allocation.

568

Table 49. Task Structuring Decisions for Remote Temperature Sensor

Task Transformations Structuring Criterion

Create New DP Create New DP Asynchronous Internal Task

Create IDP
Wait for Query Timeout
Get Temperature Reading
Prepare IDP

Asynchronous Internal Task
User-Specified Cohesion
Sequential Cohesion

Analyze Host Input Validate IDP
Prepare CP ACK

Asynchronous Internal Task
User-Specified Cohesion

DT Handler Query Digital Thermometer Asynchronous Device I/O
 Task

Tx Host Msg Transmit Host Output Asynchronous Device I/O
 Task

Rx Host Msg Receive Host Input

Determine Msg Type
Create ICP

Asynchronous Device I/O
 Task
User-Specified Cohesion
Sequential Cohesion

Determine Host Output Get New DP
Send Old DP

Asynchronous Internal Task
Periodic Internal Task
Mutually Exclusive
 Execution

Manage Temperature
 Reading

Maintain Temperature Table
Monitor Periodic Query

Asynchronous Internal Task
Periodic Internal Task
Mutually Exclusive
 Execution

569

E.2.2 Defining Task Interfaces

After structuring tasks, the designer decides to define the interfaces between tasks

in the design. CODA allocates the external interfaces for each task and for two inter-task,

event flows, DP ACK and DP NAK. CODA takes these decisions without consulting the

designer. Next, when allocating data flows between tasks, CODA consults with the

experienced designer regarding five instances where ambiguity exists. In each instance,

CODA cannot establish whether the sending task must synchronize with the receiving

task. An experienced designer might be able to provide the required information. If not,

then CODA makes a default decision to map each data flow to a queued message. In

each of the five instances in this case study, the designer provides the missing

information regarding inter-task synchronization, and CODA allocates each data flow to

an appropriate message type.

CODA then detects, that at least one task receives queued messages from multiple

source tasks. Given an experienced designer, CODA invites the designer to consider

assigning varying priorities to appropriate queued messages. In their design, Nielsen and

Shumate do not use multiple priorities; however, for this case study, the designer assigns

varying priorities to queued messages received by one task, Tx Host Msg. The designer

gives outgoing command-packet acknowledgments preference ahead of outgoing data

packets. This choice allows a demonstration of CODA’s ability to simulate priority

queues when the target environment provides no message queuing services. CODA

570

allocates appropriate queuing mechanisms and then invites the designer to review and

rename task-interface elements. The designer accepts the invitation.

E.2.3 The Task Architecture

The task architecture for the remote temperature sensor, as generated by CODA,

appears as shown in Figure 73. Figure 73 depicts the state of the design after structuring

tasks and defining task interfaces, but before structuring modules and integrating the task

and module views.

E.2.4 Structuring Modules

To continue with the design, the designer needs to structure modules. CODA

handles most module structuring decisions without consulting the designer; however,

ambiguities can arise. For example, a transformation, representing a synchronous

function, might be linked with one or more other transformations, previously allocated to

an information hiding module. In such situations, CODA can decide to allocate a

transformation to an existing module, based on sequential or functional cohesion, or can

form a new module. Lacking any other information, CODA forms a new module. Given

an experienced designer, however, CODA elicits any guidance the designer cares to

provide. The current case study contains five, ambiguous transformations: Determine

Msg Type, Create ICP, Prepare CP ACK, Get Temperature Reading, and Prepare IDP.

For each of these transformations, CODA asks the experienced designer whether to

include the transformation into an existing module or whether to form a new module

based on the transformation. For three transformations, Determine Msg Type, Prepare

571

572

S
en

d
R

ec
ei

ve
R

ep
ly

R
ec

ei
ve

R
eq

ue
st

B
uf

fe
r

T
x

P
ac

ke
ts

H
os

t T
x

Q
ue

ue M
sg

 T
o

H
os

t

S
en

d

A
na

ly
ze

 H
os

t I
np

ut
 R

eq
ue

st
s

R
ec

ei
ve

R
ep

ly

B
uf

fe
r

ID
P

s

S
en

d

H
os

t R
x

Q
ue

ue

B
uf

fe
r

R
x

P
ac

ke
ts

M
sg

 F
ro

m
 H

os
t

R
ec

ei
ve

R
eq

ue
st

R
ec

ei
ve

R
ep

ly

S
en

d

ID
P

Q
ue

ue

ID
P

C
re

at
e

N
ew

 D
P

D
et

er
m

in
e

H
os

t O
ut

pu
t

M
sg

 T
o

H
os

t

D
T

 H
an

dl
er

R
eq

ue
st

D
T

 H
an

dl
er

R
ep

ly

C
re

at
e

ID
P

R
eq

ue
st

C
re

at
e

ID
P

D
P

 A
C

K
 R

ec
ev

ie
d,

D
P

 N
A

K
 R

ec
ei

ve
d

A
na

ly
ze

 H
os

t I
np

ut

T
em

pe
ra

tu
re

M
an

ag
em

en
t

C
om

m
an

d

D
T

 H
an

dl
er

S
en

so
r

In
te

rr
up

t

F
ur

na
ce

#

T
em

pe
ra

tu
re

T
x

H
os

t M
sg

T
x

In
te

rr
up

t

D
at

a
T

o
H

os
t

R
x

H
os

t M
sg

R
x

In
te

rr
up

t

D
at

a
F

ro
m

H
os

t

R
et

ra
ns

m
it

M
an

ag
e

T
em

pe
ra

tu
re

 R
ea

di
ng

C
he

ck
 F

ur
na

ce
s

R
ec

ei
ve

R
eq

ue
st

Figure 73. Task Architecture for the Remote Temperature Sensor Design

CP ACK, and Prepare IDP, the designer indicates that a new module should be formed.

The designer also indicates that each of the two remaining transformations, Create ICP

and Get Temperature Reading, should be included into the same module as a previously

allocated transformation, Determine Msg Type and Wait for Query Timeout,

respectively.

After structuring modules and determining module operations, CODA invites the

designer to review and rename these new design elements. The designer accepts the

invitation. Table 50 reports the results of the module structuring for the remote

temperature sensor.

E.2.5 Integrating Tasks and Modules

The designer need only integrate the task and module views in order to complete

the design. When asked, CODA achieves this integration without consulting the

designer.

E.2.6 The Completed Design

Figure 74 depicts a software architecture diagram for the completed design, as

generated by CODA. The software architecture diagram builds upon the task architecture

diagram, shown previously as Figure 73, adding the modules created during module

structuring. In the resulting design, tasks share no modules. Nielsen and Shumate do not

generate modules; instead, because their target environment is an Ada run-time system,

they employ a set of guidelines to identify Ada packages. For this reason, comparisons

573

between CODA’s design and the design given by Nielsen and Shumate must be limited to

the task architecture.

 Table 50. Module Structuring Decisions for Remote Temperature Sensor

Module Transformation/Data Store Structuring Criterion

Temperature Table
Temperature Table
Monitor Periodic Query
Maintain Temperature Table

Data-Abstraction Module
Read Operation Of DAM
Update Operation Of DAM

Digital Thermometer Query Digital Thermometer Device-Interface Module

Send Message Transmit Host Output Device-Interface Module

Read Message Receive Host Input Device-Interface Module

Data Packet Create New DP Algorithm-Hiding Module

Temperature Checker
Wait for Query Timeout
Get Temperature Reading

Algorithm-Hiding Module
Designer-Allocated
 Function

ICP Validate ICP Algorithm-Hiding Module

Manage Unsent DPs Get New DP Algorithm-Hiding Module

Manage Sent DPs Send Old DP Algorithm-Hiding Module

Input Analyzer Determine Msg Type
Create ICP

Algorithm-Hiding Module
Designer-Allocated
 Function

CP ACK Prepare CP ACK Algorithm-Hiding Module

IDP Prepare IDP Algorithm-Hiding Module

574

575

S
en

d
R

ec
ei

ve
R

ep
ly

R
ec

ei
ve

R
eq

ue
st

B
uf

fe
r

T
x

P
ac

ke
ts

H
os

t T
x

Q
ue

ue M
sg

 T
o

H
os

t

S
en

d

A
na

ly
ze

 H
os

t I
np

ut
 R

eq
ue

st
s

R
ec

ei
ve

R
ep

ly

B
uf

fe
r

ID
P

s

S
en

d

H
os

t R
x

Q
ue

ue

B
uf

fe
r

R
x

P
ac

ke
ts

M
sg

 F
ro

m
 H

os
t

R
ec

ei
ve

R
eq

ue
st

R
ec

ei
ve

R
ep

ly

S
en

d

ID
P

Q
ue

ue

ID
P

C
re

at
e

N
ew

 D
P

D
et

er
m

in
e

H
os

t O
ut

pu
t

M
sg

 T
o

H
os

t

D
at

a
P

ac
ke

t D
T

 H
an

dl
er

R
eq

ue
st

D
T

 H
an

dl
er

R
ep

ly

C
re

at
e

ID
P

R
eq

ue
st

C
re

at
e

ID
P

T
em

pe
ra

tu
re

C
he

ck
er

ID
P

D
P

 A
C

K
 R

ec
ev

ie
d,

D
P

 N
A

K
 R

ec
ei

ve
d

A
na

ly
ze

 H
os

t I
np

ut

T
em

pe
ra

tu
re

M
an

ag
em

en
t

C
om

m
an

dIC
P

C
P

 A
C

K

D
T

 H
an

dl
er

S
en

so
r

In
te

rr
up

t

F
ur

na
ce

#

T
em

pe
ra

tu
re

D
ig

ita
l

T
he

rm
om

et
er

T
x

H
os

t M
sg

T
x

In
te

rr
up

t

D
at

a
T

o
H

os
t

S
en

d
M

es
sa

ge

R
x

H
os

t M
sg

R
x

In
te

rr
up

t

D
at

a
F

ro
m

H
os

t

R
ea

d
M

es
sa

ge
In

pu
t

A
na

ly
ze

r

R
et

ra
ns

m
it

M
an

ag
e

U
ns

en
t

D
P

s

M
an

ag
e

S
en

t
D

P
s

M
an

ag
e

T
em

pe
ra

tu
re

 R
ea

di
ng

C
he

ck
 F

ur
na

ce
s

T
em

pe
ra

tu
re

T
ab

le

R
ec

ei
ve

R
eq

ue
st

Figure 74. The Completed Design for the Remote Temperature Sensor

The task architecture given in Figure 73 aligns well with the design proposed by

Nielsen and Shumate. Two essential differences appear between the two designs. First,

CODA created a queued-message interface for messages received by one task, Tx Host

Msg, for which Nielsen and Shumate defined two, tightly-coupled message interfaces.

Because the target environment does not provide message-queuing services, CODA’s

decision leads to an additional, priority-queue-control task, Buffer Tx Packets, not

present in the design by Nielsen and Shumate. The second difference also relates to

intermediary tasks. Nielsen and Shumate identify a task to relay DP ACK signals from

the Rx Host Msg task to the Determine Host Output task. CODA assumes that a target

environment permitting inter-task signals provides an inherent signaling mechanism;

thus, CODA does not generate a relay task for the DP ACK.2

E.3 CODA Unaided

When a designer cannot provide assistance in cases where CODA can benefit

from such assistance, CODA takes default decisions as needed to generate a concurrent

design. The data flow diagram for the remote temperature sensor, specified using

Structured Analysis, leads CODA to seek the designer’s assistance in many situations,

during both specification analysis and design generation. If the designer could not

provide any help, then what design would CODA produce from the data flow diagram for

the remote temperature sensor? To answer this question, CODA generates another design

2 To more closely model an Ada environment, the target environment description
might indicate that no software signals are permitted between tasks. In such a case,
CODA would map the events, DP ACK and DP NAK, onto a tightly-coupled message;
thus, a relay task would not be generated by CODA under any circumstances.

576

from the amended data flow diagram, as shown in Figure 72, for the remote temperature

sensor.

E.3.1 Analyzing the Specification

The analysis of the specification proceeds straightforwardly. During the

classification of concepts, CODA queries the designer for assistance in classifying the

terminators and the ambiguous aperiodic functions. The novice designer provides no

assistance. In these cases, CODA classifies the terminators as devices and the

ambiguous, aperiodic functions as asynchronous functions. Next, CODA elicits

additional information. CODA forces the novice designer to provide periods for two

timers, Resend Timeout and Check Furnaces, and to provide maximum rates for the three

external inputs to the system. The designer must obtain this information from the textual

specification accompanying the data flow diagram. CODA offers the novice designer

opportunities to enter specification addenda. The novice designer provides no addenda.

E.3.2 The Completed Design

Next, CODA generates a concurrent design, using the same Ada target

environment as before. In this case, CODA makes all design decisions without

consulting the designer. CODA consults the designer only to elicit names for new design

elements. The resulting design consists of 27 tasks, one for each of the 15

transformations on the data flow diagram and one to control each of the 12 queues

required for the design, and 14 modules. One data-abstraction module consists of two

transformations, Maintain Temperature Table and Monitor Periodic Query, and a data

577

578

R
ec

ei
ve

R
ep

ly

S
en

d

R
x

P
ac

ke
ts

S
en

so
r

In
te

rr
up

t

F
ur

na
ce

#

T
em

pe
ra

tu
re

T
x

H
os

t
M

sg

T
x

In
te

rr
up

t
D

at
a

T
o

H
os

t

R
ec

ei
ve

R
eq

ue
st

D
ec

o
d

e
 M

sg

S
en

d

R
ec

ei
ve

R
eq

ue
st

R
ec

ei
ve

R
ep

ly

IC
P

 R
eq

ue
st

s

C
re

at
e

IC
P

S
en

d

R
ec

ei
ve

R
eq

ue
st

R
ec

ei
ve

R
ep

ly

IC
P

s

V
al

id
at

e
IC

P

S
en

d

R
ec

ei
ve

R
eq

ue
st

R
ec

ei
ve

R
ep

ly

P
re

pa
re

 C
P

 A
C

K

S
eq

ue
nc

e
N

um
be

rs

S
en

d

V
al

id
IC

P
s

R
ec

ei
ve

R
ep

ly
R

ec
ei

ve
R

eq
ue

st

M
ai

nt
ai

n
T

em
pe

ra
tu

re
T

ab
le

M
on

ito
r

P
er

io
di

c
Q

ue
ry

C
he

ck
 F

ur
na

ce
s

R
ec

ei
ve

R
eq

ue
st

R
ec

ei
ve

R
ep

ly

R
x

H
os

t
M

sg

R
x

In
te

rr
up

t

D
at

a
F

ro
m

H
os

t

T
x

P
ac

ke
ts

R
ea

d

U
pd

at
e

T
em

pe
ra

tu
re

T
ab

le

D
ig

ita
l

T
h

e
rm

o
m

e
te

r

Q
ue

ry
R

ep
ly

Q
ue

ry
R

eq
ue

st

R
ea

d
T

em
pe

ra
tu

re

W
ai

t
fo

r
Q

ue
ry

T
im

eo
ut

S
en

d

R
ec

ei
ve

R
ep

ly

R
ec

ei
ve

R
eq

ue
st

F
ur

na
ce

 #
s

S
en

d

R
ec

ei
ve

R
eq

ue
st

R
ec

ei
ve

R
ep

ly

Q
ue

ry
R

eq
ue

st
s

S
en

d

R
ea

di
ng

sP
re

pa
re

ID
P

R
ec

ei
ve

R
eq

ue
st

R
ec

ei
ve

R
ep

ly

S
en

d

D
P

 A
C

K

D
P

 N
A

K

S
en

d
N

ex
t

D
P

R
es

en
d

P
re

vi
ou

s
D

P
R

et
ra

n
sm

it

S
en

d

S
en

d

S
en

d

R
ec

ei
ve

R
eq

ue
st

R
ec

ei
ve

R
ep

ly

S
en

t D
P

s

R
ec

ei
ve

R
eq

ue
st

R
ec

ei
ve

R
ep

ly

O
ut

go
in

g
D

P
s

S
en

d

F
or

m
at

D
P

S
en

d

R
ec

ei
ve

R
eq

ue
st

R
ec

ei
ve

R
ep

ly

In
te

rn
al

 D
P

s

Figure 75. Design Generated, Unaided, by CODA for the Remote Temperature Sensor

store, Temperature Table. CODA allocates each of the remaining 13 transformations to

an independent module. Figure 75 illustrates the task architecture for this design.

For the remote temperature system, CODA, unaided by an experienced designer

during both the concept classification and the design generation, produces a less efficient

design than is the case when CODA receives assistance. The design shown in Figure 75

calls for 27 tasks rather than the 11 tasks needed for the design shown in Figure 73. In

addition, although not shown in Figure 75, CODA, unaided, generates a design calling for

14 modules, while, as shown in Figure 73, with help from an experienced designer,

CODA created a design requiring only 12 modules. These results illustrate that CODA

generates more efficient designs when a designer provides help during the classification

of aperiodic functions and when an input data/control flow diagram takes advantage of

the semantic concepts from the specification meta-model.

579

